SnO2 Nanosheet/Nanoparticle Detector for the Sensing of 1-Nonanal Gas Produced by Lung Cancer

نویسندگان

  • Yoshitake Masuda
  • Toshio Itoh
  • Woosuck Shin
  • Kazumi Kato
چکیده

A sensor has been developed for detecting 1-nonanal gas present in the breath of lung cancer patients by combining SnO2 nanosheets with SnO2 nanoparticles and noble metal catalysts. A significant change in the electrical resistance of this sensor was observed with increasing 1-nonanal gas concentration; the resistance decreased by a factor of 1.12 within the range of 1 to 10 ppm at 300 °C. The recovery of the sensor's resistance after detecting 1-nonanal gas concentrations of 0.055, 0.18, 1, and 9.5 ppm was determined to be 86.1, 84.2, 80.4 and 69.2%, respectively. This high sensitivity is attributed to the accelerated oxidation of 1-nonanal molecules caused by the (101) crystal faces of the SnO2 nanosheets and should provide a simple and effective approach to the early detection of lung cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Indoor Radon Concentration Using CR-39 Detector; a Case Study of Gachin Dwellings in Hormozgan

Introduction: Radon is a colorless inert gas which decay products are the main component of natural radioactive elements that are naturally produced in under layers of earth crust by decay of radium and uranium. It enters through buildings via gaps and cracks. Radon gas decay products like alpha particle can increase the incidence of lung cancer in human. Since every person sp...

متن کامل

Sensing of Methanol and Ethanol with Nano-Structured SnO2 (110) in Gas Phase: Monte Carlo Simulation

The SnO2 films deposited from inorganic precursors via sol–gel dip coating method have been found to be highly sensitive to methanol and ethanol vapor. Three dimensional nano-structure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. The sensitivity and selectivity of SnO2 (110) nano...

متن کامل

Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin  layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...

متن کامل

Theoretical Approach for Detection of POCl3 Molecule by the Boron Nitride Nanosheet-based Sensing Nanodevices

To detect POCl3 molecule, adsorption phenomena of this molecule on the pure, Al- and Si-doped BN sheet surfaces were investigated via density functional theory (DFT) approach. The most stable adsorption complexes, including POCl3/BN (O-B), POCl3/Al-BN (O-Al), and POCl3/Si-BN (O-Si), were predicted with the adsorption energies of about -8.64, -37.01 and, -62.01 kcal mol-1, respectively. Upon the...

متن کامل

Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity.

Pt activated SnO2 nanoparticle clusters were synthesized by a simple solvothermal method. The structure, morphology, chemical state and specific surface area were analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2-sorption studies, respectively. The SnO2 nanoparticle cluster matrix consists of tens of thousands of Sn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015